Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Physiol ; 602(2): 333-354, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38186087

RESUMO

Some residues in the cystic fibrosis transmembrane conductance regulator (CFTR) channel are the site of more than one CFTR variant that cause cystic fibrosis. Here, we investigated the function of S1159F and S1159P, two variants associated with different clinical phenotypes, which affect the same pore-lining residue in transmembrane segment 12 that are both strongly potentiated by ivacaftor when expressed in CFBE41o- bronchial epithelial cells. To study the single-channel behaviour of CFTR, we applied the patch-clamp technique to Chinese hamster ovary cells heterologously expressing CFTR variants incubated at 27°C to enhance channel residence at the plasma membrane. S1159F- and S1159P-CFTR formed Cl- channels activated by cAMP-dependent phosphorylation and gated by ATP that exhibited thermostability at 37°C. Both variants modestly reduced the single-channel conductance of CFTR. By severely attenuating channel gating, S1159F- and S1159P-CFTR reduced the open probability (Po ) of wild-type CFTR by ≥75% at ATP (1 mM); S1159F-CFTR caused the greater decrease in Po consistent with its more severe clinical phenotype. Ivacaftor (10-100 nM) doubled the Po of both CFTR variants without restoring Po values to wild-type levels, but concomitantly, ivacaftor decreased current flow through open channels. For S1159F-CFTR, the reduction of current flow was marked at high (supersaturated) ivacaftor concentrations (0.5-1 µM) and voltage-independent, identifying an additional detrimental action of elevated ivacaftor concentrations. In conclusion, S1159F and S1159P are gating variants, which also affect CFTR processing and conduction, but not stability, necessitating the use of combinations of CFTR modulators to optimally restore their channel activity. KEY POINTS: Dysfunction of the ion channel cystic fibrosis transmembrane conductance regulator (CFTR) causes the genetic disease cystic fibrosis (CF). This study investigated two rare pathogenic CFTR variants, S1159F and S1159P, which affect the same amino acid in CFTR, to understand the molecular basis of disease and response to the CFTR-targeted therapy ivacaftor. Both rare variants diminished CFTR function by modestly reducing current flow through the channel and severely inhibiting ATP-dependent channel gating with S1159F exerting the stronger adverse effect, which correlates with its association with more severe disease. Ivacaftor potentiated channel gating by both rare variants without restoring their activity to wild-type levels, but concurrently reduced current flow through open channels, particularly those of S1159F-CFTR. Our data demonstrate that S1159F and S1159P cause CFTR dysfunction by multiple mechanisms that require combinations of CFTR-targeted therapies to fully restore channel function.


Assuntos
Fibrose Cística , Quinolonas , Cricetinae , Animais , Humanos , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Células CHO , Cricetulus , Aminoácidos , Ativação do Canal Iônico , Aminofenóis/farmacologia , Trifosfato de Adenosina/metabolismo
3.
Handb Exp Pharmacol ; 2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-35972584

RESUMO

People with cystic fibrosis (CF) suffer from a multi-organ disorder caused by loss-of-function variants in the gene encoding the epithelial anion channel cystic fibrosis transmembrane conductance regulator (CFTR). Tremendous progress has been made in both basic and clinical sciences over the past three decades since the identification of the CFTR gene. Over 90% of people with CF now have access to therapies targeting dysfunctional CFTR. This success was made possible by numerous studies in the field that incrementally paved the way for the development of small molecules known as CFTR modulators. The advent of CFTR modulators transformed this life-threatening illness into a treatable disease by directly binding to the CFTR protein and correcting defects induced by pathogenic variants. In this chapter, we trace the trajectory of structural and functional studies that brought CF therapies from bench to bedside, with an emphasis on mechanistic understanding of CFTR modulators.

4.
Sci Rep ; 12(1): 6593, 2022 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-35449374

RESUMO

Cystic fibrosis (CF) is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Defective CFTR leads to accumulation of dehydrated viscous mucus within the small intestine, luminal acidification and altered intestinal motility, resulting in blockage. These changes promote gut microbial dysbiosis, adversely influencing the normal proliferation and differentiation of intestinal epithelial cells. Using Illumina 16S rRNA gene sequencing and immunohistochemistry, we assessed changes in mucosa-attached microbiome and epithelial cell profile in the small intestine of CF mice and a CF patient compared to wild-type mice and non-CF humans. We found increased abundance of pro-inflammatory Escherichia and depletion of beneficial secondary bile-acid producing bacteria in the ileal mucosa-attached microbiome of CFTR-null mice. The ileal mucosa in a CF patient was dominated by a non-aeruginosa Pseudomonas species and lacked numerous beneficial anti-inflammatory and short-chain fatty acid-producing bacteria. In the ileum of both CF mice and a CF patient, the number of absorptive enterocytes, Paneth and glucagon-like peptide 1 and 2 secreting L-type enteroendocrine cells were decreased, whereas stem and goblet cell numbers were increased. These changes in mucosa-attached microbiome and epithelial cell profile suggest that microbiota-host interactions may contribute to intestinal CF disease development with implications for therapy.


Assuntos
Fibrose Cística , Enteropatias , Microbiota , Animais , Bactérias/genética , Contagem de Células , Fibrose Cística/microbiologia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Células Caliciformes , Humanos , Enteropatias/complicações , Mucosa Intestinal/microbiologia , Intestino Delgado/microbiologia , Camundongos , RNA Ribossômico 16S/genética
5.
JCI Insight ; 7(6)2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35315358

RESUMO

The chloride channel dysfunction caused by deleterious cystic fibrosis transmembrane conductance regulator (CFTR) variants generally correlates with severity of cystic fibrosis (CF). However, 3 adults bearing the common severe variant p.Phe508del (legacy: F508del) and a deletion variant in an ivacaftor binding region of CFTR (p.Phe312del; legacy: F312del) manifested only elevated sweat chloride concentration (sw[Cl-]; 87-105 mEq/L). A database review of 25 individuals with F312del and a CF-causing variant revealed elevated sw[Cl-] (75-123 mEq/L) and variable CF features. F312del occurs at a higher-than-expected frequency in the general population, confirming that individuals with F312del and a CF-causing variant do not consistently develop overt CF features. In primary nasal cells, CFTR bearing F312del and F508del generated substantial chloride transport (66.0% ± 4.5% of WT-CFTR) but did not respond to ivacaftor. Single-channel analysis demonstrated that F312del did not affect current flow through CFTR, minimally altered gating, and ablated the ivacaftor response. When expressed stably in CF bronchial epithelial (CFBE41o-) cells, F312del-CFTR demonstrated residual function (50.9% ± 3.3% WT-CFTR) and a subtle decrease in forskolin response compared with WT-CFTR. F312del provides an exception to the established correlation between CFTR chloride transport and CF phenotype and informs our molecular understanding of ivacaftor response.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Aminofenóis/farmacologia , Aminofenóis/uso terapêutico , Cloretos/metabolismo , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Humanos , Fenótipo , Quinolonas
6.
J Biol Chem ; 298(3): 101615, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35065958

RESUMO

Deletion of phenylalanine 508 (F508del) in the cystic fibrosis transmembrane conductance regulator (CFTR) anion channel is the most common cause of cystic fibrosis. The F508 residue is located on nucleotide-binding domain 1 (NBD1) in contact with the cytosolic extensions of the transmembrane helices, in particular intracellular loop 4 (ICL4). To investigate how absence of F508 at this interface impacts the CFTR protein, we carried out a mutagenesis scan of ICL4 by introducing second-site mutations at 11 positions in cis with F508del. Using an image-based fluorescence assay, we measured how each mutation affected membrane proximity and ion-channel function. The scan strongly validated the effectiveness of R1070W at rescuing F508del defects. Molecular dynamics simulations highlighted two features characterizing the ICL4/NBD1 interface of F508del/R1070W-CFTR: flexibility, with frequent transient formation of interdomain hydrogen bonds, and loosely stacked aromatic sidechains (F1068, R1070W, and F1074, mimicking F1068, F508, and F1074 in WT CFTR). F508del-CFTR displayed a distorted aromatic stack, with F1068 displaced toward the space vacated by F508, while in F508del/R1070F-CFTR, which largely retained F508del defects, R1070F could not form hydrogen bonds and the interface was less flexible. Other ICL4 second-site mutations which partially rescued F508del-CFTR included F1068M and F1074M. Methionine side chains allow hydrophobic interactions without the steric rigidity of aromatic rings, possibly conferring flexibility to accommodate the absence of F508 and retain a dynamic interface. These studies highlight how both hydrophobic interactions and conformational flexibility might be important at the ICL4/NBD1 interface, suggesting possible structural underpinnings of F508del-induced dysfunction.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Mutação , Fibrose Cística/genética , Fibrose Cística/metabolismo , Humanos , Domínios Proteicos , Estrutura Secundária de Proteína
7.
J Physiol ; 600(6): 1515-1531, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34761808

RESUMO

Dysfunction of the epithelial anion channel cystic fibrosis transmembrane conductance regulator (CFTR) causes a wide spectrum of disease, including cystic fibrosis (CF) and CFTR-related diseases (CFTR-RDs). Here, we investigate genotype-phenotype-CFTR function relationships using human nasal epithelial (hNE) cells from a small cohort of non-CF subjects and individuals with CF and CFTR-RDs and genotypes associated with either residual or minimal CFTR function using electrophysiological techniques. Collected hNE cells were either studied directly with the whole-cell patch-clamp technique or grown as primary cultures at an air-liquid interface after conditional reprogramming. The properties of cAMP-activated whole-cell Cl- currents in freshly isolated hNE cells identified them as CFTR-mediated. Their magnitude varied between hNE cells from individuals within the same genotype and decreased in the rank order: non-CF > CFTR residual function > CFTR minimal function. CFTR-mediated whole-cell Cl- currents in hNE cells isolated from fully differentiated primary cultures were identical to those in freshly isolated hNE cells in both magnitude and behaviour, demonstrating that conditional reprogramming culture is without effect on CFTR expression and function. For the cohort of subjects studied, CFTR-mediated whole-cell Cl- currents in hNE cells correlated well with CFTR-mediated transepithelial Cl- currents measured in vitro with the Ussing chamber technique, but not with those determined in vivo with the nasal potential difference assay. Nevertheless, they did correlate with the sweat Cl- concentration of study subjects. Thus, this study highlights the complexity of genotype-phenotype-CFTR function relationships, but emphasises the value of conditionally reprogrammed hNE cells in CFTR research and therapeutic testing. KEY POINTS: The genetic disease cystic fibrosis is caused by pathogenic variants in the cystic fibrosis transmembrane conductance regulator (CFTR), an ion channel, which controls anion flow across epithelia lining ducts and tubes in the body. This study investigated CFTR function in nasal epithelial cells from people with cystic fibrosis and CFTR variants with a range of disease severity. CFTR function varied widely in nasal epithelial cells depending on the identity of CFTR variants, but was unaffected by conditional reprogramming culture, a cell culture technique used to grow large numbers of patient-derived cells. Assessment of CFTR function in vitro in nasal epithelial cells and epithelia, and in vivo in the nasal epithelium and sweat gland highlights the complexity of genotype-phenotype-CFTR function relationships.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Cloretos/metabolismo , Fibrose Cística/genética , Fibrose Cística/patologia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Células Epiteliais/metabolismo , Genótipo , Humanos , Mucosa Nasal/metabolismo , Mucosa Nasal/patologia , Fenótipo
8.
Br J Pharmacol ; 179(7): 1319-1337, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34644413

RESUMO

BACKGROUND AND PURPOSE: Cystic fibrosis transmembrane conductance regulator (CFTR) potentiators are small molecules developed to treat the genetic disease cystic fibrosis (CF). They interact directly with CFTR Cl- channels at the plasma membrane to enhance channel gating. Here, we investigate the action of a new CFTR potentiator, CP-628006 with a distinct chemical structure. EXPERIMENTAL APPROACH: Using electrophysiological assays with CFTR-expressing heterologous cells and CF patient-derived human bronchial epithelial (hBE) cells, we compared the effects of CP-628006 with the marketed CFTR potentiator ivacaftor. KEY RESULTS: CP-628006 efficaciously potentiated CFTR function in epithelia from cultured hBE cells. Its effects on the predominant CFTR variant F508del-CFTR were larger than those with the gating variant G551D-CFTR. In excised inside-out membrane patches, CP-628006 potentiated wild-type, F508del-CFTR, and G551D-CFTR by increasing the frequency and duration of channel openings. CP-628006 increased the affinity and efficacy of F508del-CFTR gating by ATP. In these respects, CP-628006 behaved like ivacaftor. CP-628006 also demonstrated notable differences with ivacaftor. Its potency and efficacy were lower than those of ivacaftor. CP-628006 conferred ATP-dependent gating on G551D-CFTR, whereas the action of ivacaftor was ATP-independent. For G551D-CFTR, but not F508del-CFTR, the action of CP-628006 plus ivacaftor was greater than ivacaftor alone. CP-628006 delayed, but did not prevent, the deactivation of F508del-CFTR at the plasma membrane, whereas ivacaftor accentuated F508del-CFTR deactivation. CONCLUSIONS AND IMPLICATIONS: CP-628006 has distinct effects compared to ivacaftor, suggesting a different mechanism of CFTR potentiation. The emergence of CFTR potentiators with diverse modes of action makes therapy with combinations of potentiators a possibility.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Trifosfato de Adenosina , Aminofenóis/farmacologia , Linhagem Celular , Células Cultivadas , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Humanos , Mutação
9.
Nat Chem Biol ; 17(9): 989-997, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34341587

RESUMO

The cystic fibrosis transmembrane conductance regulator (CFTR) anion channel is essential to maintain fluid homeostasis in key organs. Functional impairment of CFTR due to mutations in the cftr gene leads to cystic fibrosis. Here, we show that the first nucleotide-binding domain (NBD1) of CFTR can spontaneously adopt an alternate conformation that departs from the canonical NBD fold previously observed. Crystallography reveals that this conformation involves a topological reorganization of NBD1. Single-molecule fluorescence resonance energy transfer microscopy shows that the equilibrium between the conformations is regulated by adenosine triphosphate binding. However, under destabilizing conditions, such as the disease-causing mutation F508del, this conformational flexibility enables unfolding of the ß-subdomain. Our data indicate that, in wild-type CFTR, this conformational transition of NBD1 regulates channel function, but, in the presence of the F508del mutation, it allows domain misfolding and subsequent protein degradation. Our work provides a framework to design conformation-specific therapeutics to prevent noxious transitions.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/química , Regulador de Condutância Transmembrana em Fibrose Cística/isolamento & purificação , Transferência Ressonante de Energia de Fluorescência , Células HEK293 , Humanos , Modelos Moleculares , Conformação Proteica , Desdobramento de Proteína
10.
J Cyst Fibros ; 20(5): 843-850, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34020896

RESUMO

BACKGROUND: The clinical response to cystic fibrosis transmembrane conductance regulator (CFTR) modulators varies between people with cystic fibrosis (CF) of the same genotype, in part through the action of solute carriers encoded by modifier genes. Here, we investigate whether phosphate transport by SLC34A2 modulates the function of F508del-CFTR after its rescue by CFTR correctors. METHODS: With Fischer rat thyroid (FRT) cells heterologously expressing wild-type and F508del-CFTR and fully-differentiated CF and non-CF human airway epithelial cells, we studied SLC34A2 expression and the effects of phosphate on CFTR-mediated transepithelial ion transport. F508del-CFTR was trafficked to the plasma membrane by incubation with different CFTR correctors (alone or in combination) or by low temperature. RESULTS: Quantitative RT-PCR demonstrated that both FRT and primary airway epithelial cells express SLC34A2 mRNA and no differences were found between cells expressing wild-type and F508del-CFTR. For both heterologously expressed and native F508del-CFTR rescued by either VX-809 or C18, the magnitude of CFTR-mediated Cl- currents was dependent on the presence of extracellular phosphate. However, this effect of phosphate was not detected with wild-type and low temperature-rescued F508del-CFTR Cl- currents. Importantly, the modulatory effect of phosphate was observed in native CF airway cells exposed to VX-445, VX-661 and VX-770 (Trikafta) and was dependent on the presence of both sodium and phosphate. CONCLUSIONS: Extracellular phosphate modulates the magnitude of CFTR-mediated Cl- currents after F508del-CFTR rescue by clinically-approved CFTR correctors. This effect likely involves electrogenic phosphate transport by SLC34A2. It might contribute to inter-individual variability in the clinical response to CFTR correctors.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/efeitos dos fármacos , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Fibrose Cística/tratamento farmacológico , Fibrose Cística/metabolismo , Fosfatos/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIb/metabolismo , Aminofenóis/farmacologia , Animais , Benzodioxóis/farmacologia , Membrana Celular/metabolismo , Fibrose Cística/genética , Quimioterapia Combinada , Humanos , Indóis/farmacologia , Transporte de Íons , Pirazóis/farmacologia , Piridinas/farmacologia , Pirrolidinas/farmacologia , Quinolonas/farmacologia , Ratos , Ratos Endogâmicos F344
11.
Am J Physiol Lung Cell Mol Physiol ; 319(6): L997-L1009, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32936026

RESUMO

The gasotransmitter carbon monoxide (CO) regulates fluid and electrolyte movements across epithelial tissues. However, its action on anion channels is incompletely understood. Here, we investigate the direct action of CO on the cystic fibrosis transmembrane conductance regulator (CFTR) by applying CO-releasing molecules (CO-RMs) to the intracellular side of excised inside-out membrane patches from cells heterologously expressing wild-type human CFTR. Addition of increasing concentrations of tricarbonyldichlororuthenium(II) dimer (CORM-2) (1-300 µM) inhibited CFTR channel activity, whereas the control RuCl3 (100 µM) was without effect. CORM-2 predominantly inhibited CFTR by decreasing the frequency of channel openings and, hence, open probability (Po). But, it also reduced current flow through open channels with very fast kinetics, particularly at elevated concentrations. By contrast, the chemically distinct CO-releasing molecule CORM-3 inhibited CFTR by decreasing Po without altering current flow through open channels. Neither depolarizing the membrane voltage nor raising the ATP concentration on the intracellular side of the membrane affected CFTR inhibition by CORM-2. Interestingly, CFTR inhibition by CORM-2, but not by CFTRinh-172, was prevented by prior enhancement of channel activity by the clinically approved CFTR potentiator ivacaftor. Similarly, when added after CORM-2, ivacaftor completely relieved CFTR inhibition. In conclusion, CORM-2 has complex effects on wild-type human CFTR consistent with allosteric inhibition and open-channel blockade. Inhibition of CFTR by CO-releasing molecules suggests that CO regulates CFTR activity and that the gasotransmitter has tissue-specific effects on epithelial ion transport. The action of ivacaftor on CFTR Cl- channels inhibited by CO potentially expands the drug's clinical utility.


Assuntos
Monóxido de Carbono/farmacologia , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Ativação do Canal Iônico/efeitos dos fármacos , Transporte de Íons/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Animais , Monóxido de Carbono/metabolismo , Humanos
12.
Biochem Biophys Res Commun ; 523(3): 816-821, 2020 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-31954520

RESUMO

Parathyroid hormone (PTH) enhances cystic fibrosis transmembrane conductance regulator (CFTR)-mediated anion secretion by the human intestinal epithelial cell line Caco-2. With the patch-clamp and Ussing chamber techniques, we investigated how PTH stimulates CFTR activity in Caco-2 cells. Cell-attached recordings revealed that PTH stimulated the opening of CFTR-like channels, while impedance analysis demonstrated that PTH increased apical membrane capacitance, a measure of membrane surface area. Using ion substitution experiments, the PTH-stimulated increase in short-circuit current (Isc), a measure of transepithelial ion transport, was demonstrated to be Cl-- and HCO3--dependent. However, the PTH-stimulated increase in Isc was unaffected by the carbonic anhydrase inhibitor acetazolamide, but partially blocked by the intermediate-conductance Ca2+-activated K+ channel (IKCa) inhibitor clotrimazole. TRAM-34, a related IKCa inhibitor, failed to directly inhibit CFTR Cl- channels in cell-free membrane patches, excluding its action on CFTR. In conclusion, PTH enhances CFTR-mediated anion secretion by Caco-2 monolayers by increasing the expression and function of CFTR in the apical membrane and IKCa activity in the basolateral membrane.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Mucosa Intestinal/metabolismo , Hormônio Paratireóideo/metabolismo , Ânions/metabolismo , Células CACO-2 , Regulador de Condutância Transmembrana em Fibrose Cística/análise , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Humanos , Mucosa Intestinal/citologia , Transporte de Íons , Regulação para Cima
13.
J Cyst Fibros ; 19 Suppl 1: S25-S32, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31902693

RESUMO

The treatment of cystic fibrosis (CF) has been transformed by orally-bioavailable small molecule modulators of the cystic fibrosis transmembrane conductance regulator (CFTR), which restore function to CF mutants. However, CFTR modulators are not available to all people with CF and better modulators are required to prevent disease progression. Here, we review selectively recent advances in CFTR folding, function and pharmacology. We highlight ensemble and single-molecule studies of CFTR folding, which provide new insight into CFTR assembly, its perturbation by CF mutations and rescue by CFTR modulators. We discuss species-dependent differences in the action of the F508del-CFTR mutation on CFTR expression, stability and function, which might influence pharmacological studies of CFTR modulators in CF animal models. Finally, we illuminate the identification of combinations of two CFTR potentiators (termed co-potentiators), which restore therapeutically-relevant levels of CFTR activity to rare CF mutations. Thus, mechanistic studies of CFTR folding, function and pharmacology inform the development of highly effective CFTR modulators.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Moduladores de Transporte de Membrana/farmacologia , Terapia de Alvo Molecular , Animais , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Humanos , Medicina Molecular/métodos , Medicina Molecular/tendências , Terapia de Alvo Molecular/métodos , Terapia de Alvo Molecular/tendências , Mutação , Testes Farmacogenômicos
15.
J Cyst Fibros ; 19 Suppl 1: S19-S24, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31759907

RESUMO

Structural biology and functional studies are a powerful combination to elucidate fundamental knowledge about the cystic fibrosis transmembrane conductance regulator (CFTR). Here, we discuss the latest findings, including how clinically-approved drugs restore function to mutant CFTR, leading to better clinical outcomes for people with cystic fibrosis (CF). Despite the prospect of regulatory approval of a CFTR-targeting therapy for most CF mutations, strenuous efforts are still needed to fully comprehend CFTR structure-and-function for the development of better drugs to enable people with CF to live full and active lives.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística , Terapia de Alvo Molecular/métodos , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Fibrose Cística/fisiopatologia , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Ativação do Canal Iônico/genética , Mutação , Resultado do Tratamento
16.
Mol Pharmacol ; 96(1): 115-126, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31048549

RESUMO

Three small conductance calcium-activated potassium channel (SK) subunits have been cloned and found to preferentially form heteromeric channels when expressed in a heterologous expression system. The original cloning of the gene encoding the intermediate conductance calcium-activated potassium channel (IKCa) was termed SK4 because of the high homology between channel subtypes. Recent immunovisualization suggests that IKCa is expressed in the same subcellular compartments of some neurons as SK channel subunits. Stochastic optical reconstruction microscopy super-resolution microscopy revealed that coexpressed IKCa and SK1 channel subunits were closely associated, a finding substantiated by measurement of fluorescence resonance energy transfer between coexpressed fluorophore-tagged subunits. Expression of homomeric SK1 channels produced current that displayed typical sensitivity to SK channel inhibitors, while expressed IKCa channel current was inhibited by known IKCa channel blockers. Expression of both SK1 and IKCa subunits gave a current that displayed no sensitivity to SK channel inhibitors and a decreased sensitivity to IKCa current inhibitors. Single channel recording indicated that coexpression of SK1 and IKCa subunits produced channels with properties intermediate between those observed for homomeric channels. These data indicate that SK1 and IKCa channel subunits preferentially combine to form heteromeric channels that display pharmacological and biophysical properties distinct from those seen with homomeric channels.


Assuntos
Canais de Potássio Ativados por Cálcio de Condutância Intermediária/metabolismo , Complexos Multiproteicos/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Baixa/metabolismo , Linhagem Celular , Transferência Ressonante de Energia de Fluorescência , Células HEK293 , Humanos , Microscopia , Processos Estocásticos
17.
Am J Physiol Lung Cell Mol Physiol ; 317(1): L71-L86, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30969810

RESUMO

Cross-species comparative studies have highlighted differences between human and mouse cystic fibrosis transmembrane conductance regulator (CFTR), the epithelial Cl- channel defective in cystic fibrosis (CF). Here, we compare the impact of the most common CF mutation F508del on the function of human and mouse CFTR heterologously expressed in mammalian cells and their response to CFTR modulators using the iodide efflux and patch-clamp techniques. Once delivered to the plasma membrane, human F508del-CFTR exhibited a severe gating defect characterized by infrequent channel openings and was thermally unstable, deactivating within minutes at 37°C. By contrast, the F508del mutation was without effect on the gating pattern of mouse CFTR, and channel activity demonstrated thermostability at 37°C. Strikingly, at all concentrations tested, the clinically approved CFTR potentiator ivacaftor was without effect on the mouse F508del-CFTR Cl- channel. Moreover, eight CFTR potentiators, including ivacaftor, failed to generate CFTR-mediated iodide efflux from CHO cells expressing mouse F508del-CFTR. However, they all produced CFTR-mediated iodide efflux with human F508del-CFTR-expressing CHO cells, while fifteen CFTR correctors rescued the plasma membrane expression of both human and mouse F508del-CFTR. Interestingly, the CFTR potentiator genistein enhanced CFTR-mediated iodide efflux from CHO cells expressing either human or mouse F508del-CFTR, whereas it only potentiated human F508del-CFTR Cl- channels in cell-free membrane patches, suggesting that its action on mouse F508del-CFTR is indirect. Thus, the F508del mutation has distinct effects on human and mouse CFTR Cl- channels.


Assuntos
Sequência de Bases , Agonistas dos Canais de Cloreto/farmacologia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Deleção de Sequência , Trifosfato de Adenosina/metabolismo , Aminofenóis/farmacologia , Aminopiridinas/farmacologia , Animais , Benzodioxóis/farmacologia , Células CHO , Colforsina/farmacologia , Cricetulus , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Expressão Gênica , Genisteína/farmacologia , Transporte de Íons/efeitos dos fármacos , Camundongos , Células NIH 3T3 , Técnicas de Patch-Clamp , Estabilidade Proteica , Quinolonas/farmacologia , Especificidade da Espécie , Temperatura , Transgenes
18.
Chem Sci ; 10(7): 1976-1985, 2019 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-30881627

RESUMO

A series of fluorinated tripodal tris-thioureas function as highly active anion transporters across lipid bilayers and cell membranes. Here, we investigate their mechanism of action using anion transport assays in cells and synthetic vesicles and molecular modelling of transporter-lipid interactions. When compared with non-fluorinated analogues, fluorinated compounds demonstrate a different mechanism of membrane transport because the free transporter cannot effectively diffuse through the membrane. As a result, in H+/Cl- cotransport assays, fluorinated transporters require the presence of oleic acid to form anionic oleate complexes for recycling of the transporter, whereas non-fluorinated analogues readily diffuse through the membrane as free transporters and show synergistic transport with the proton transporter gramicidin. Molecular dynamics simulations revealed markedly stronger transporter-lipid interactions for fluorinated compounds compared with non-fluorinated analogues and hence, higher energy barriers for fluorinated compounds to cross the membrane as free transporters. With use of appropriate proton transporters to ensure measurement of the correct rate-limiting steps, the transport rates determined in synthetic vesicle assays show excellent agreement with the anion transport rates determined in cell-based assays. We conclude that integration of computational and experimental methods provides a strategy to optimise transmembrane anion transporter design for biomedical applications.

20.
Chem Sci ; 10(42): 9663-9672, 2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-32055336

RESUMO

Defective anion transport is a hallmark of the genetic disease cystic fibrosis (CF). One approach to restore anion transport to CF cells utilises alternative pathways for transmembrane anion transport, including artificial anion carriers (anionophores). Here, we screened 22 anionophores for biological activity using fluorescence emission from the halide-sensitive yellow fluorescent protein. Three compounds possessed anion transport activity similar to or greater than that of a bis-(p-nitrophenyl)ureidodecalin previously shown to have promising biological activity. Anion transport by these anionophores was concentration-dependent and persistent. All four anionophores mediated anion transport in CF cells, and their activity was additive to rescue of the predominant disease-causing variant F508del-CFTR using the clinically-licensed drugs lumacaftor and ivacaftor. Toxicity was variable but minimal at the lower end. The results provide further evidence that anionophores, by themselves or together with other treatments that restore anion transport, offer a potential therapeutic strategy for CF.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...